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Two-dimensional polymer networks at a mixed boundary:
Surface and wedge exponents
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Abstract. We provide general formulae for the configurational exponents of an arbitrary polymer network
connected to the surface of an arbitrary wedge of the two-dimensional plane, where the surface is allowed to
assume a general mixture of boundary conditions on either side of the wedge. We report on a comprehensive
study of a linear chain by exact enumeration, with various attachments of the walk’s ends to the surface,
in wedges of angles π/2 and π, with general mixed boundary conditions.
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1 Introduction

The configurational properties of long self-avoiding poly-
mer chains in the vicinity of a boundary has long been of
interest [1]. Recent progress has involved combining gen-
eral results from scaling and conformal invariance [2–4]
with results from exactly solved lattice models. The canon-
ical model of polymers in a solvent is that of self-avoiding
walks (SAWs) on a lattice. A wall can be introduced by
restricting the SAW to the upper half of the lattice, and
the interaction with the surface by an energy, ε, associ-
ated with contacts between the polymer and the surface.
The Boltzmann weight for a configuration of the poly-
mer is given by κm = emε/kBT , where T is the tempera-
ture of the solvent and m is the number of contacts with
the surface. At some critical temperature, Ta, the poly-
mer becomes adsorbed onto the surface [5]. For high tem-
peratures, (T > Ta), the polymer is in a desorbed phase
where it extends a large distance into the solvent above
the surface to which it is attached. For low temperatures,
(T < Ta), the polymer is in an adsorbed phase. It is well
known [6] that there is a correspondence between SAWs
and the O(n) model in the limit n→ 0. The O(n) model
has been considered with three different boundary condi-
tions: free boundary spins, where the bulk and surface cou-
plings are the same; fixed boundary spins; and critically
enhanced surface coupling [7]. In the terminology of sur-
face critical phenomena these three boundary conditions
correspond to the ‘ordinary’, ‘extraordinary’ and ‘special’
transitions. The critical adsorption temperature, Ta, for
SAWs corresponds to the ‘special’ transition, whilst the
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‘ordinary’ transition corresponds to SAWs in the presence
of an effectively repulsive surface.

Recently Batchelor and Yung [8] derived the critical
temperature and configurational exponent from the Bethe
Ansatz solution of theO(n) loop model with mixed bound-
ary conditions on the honeycomb lattice. Here, ‘ordinary’
(o) boundary conditions apply to one side of the walk’s
origin, and ‘special’ (s) boundary conditions apply to the
other. The general model with a flat surface and mixed
boundary conditions on the honeycomb lattice has been
discussed by Bennett-Wood and Owczarek [9] who verified
the critical temperature and exponent values.

Here we provide the general formulae for the configu-
rational exponents of an arbitrary polymer network con-
nected to the surface of an arbitrary wedge of the two-
dimensional plane where the surface is allowed to have
general mixed boundary conditions. We also report on an
extensive numerical study of this situation. This confirms
the theory and brings together consistent numerics for all
previously studied cases. Our results are given in Table 1.

2 Surface exponents for arbitrary
mixed topology

We consider the most general mixed network of N iden-
tical long self-avoiding polymer chains of lengths S. Each
chain ends in a vertex. The surface geometry is depicted
in Figure 1. Vertices in the vicinity of the boundary where
the boundary conditions change from o to s are denoted
m. The topological characteristics are the numbers nL of
L-leg vertices in the bulk and n′L of L-leg vertices near the
surface. In particular, n′L is the total number of vertices
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Fig. 1. A network made of N = 11 chains at the mixed o-s
boundary. There are V = 6 bulk vertices, with n1 = 3, n3 = 2,
n4 = 1 and V ′ = 4 surface vertices, with no
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ns
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2 = 1.

of each type, n′L = no
L + nm

L + ns
L. In each case there can

be L ≥ 1 vertices. The total number of bulk and surface
vertices are given by V =

∑
nL and V ′ =

∑
n′L. The

number of chains can be written as N = 1
2

∑
(nL + n′L)L.

The number of configurations ZG of the network is
given by ZG ∼ µNSSγG−1 as S → ∞. Here µ is the con-
nective constant for SAWs. The general argument for the
universal exponent γG follows that given in [10] for the
polydisperse partition function, with result
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We also make the assumption that the chains are monodis-
perse, with γG = γGpoly−N+1. Collecting the terms, with
ν = 3

4 [11], then gives
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where the xL are geometric scaling dimensions. These have
all been derived for the bulk, ordinary, special and mixed
transitions [8,12–15] from the exactly solved O(n) model
on the honeycomb lattice [13,16,17]. The dimensions xL
and xo

L had been obtained earlier by conformal invariance

s
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s
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Fig. 2. (a) A mixed o-s network with a vertex in a wedge of
angle α; (b) a star polymer.

and Coulomb gas methods [10,18–21]. In particular, at
n = 0
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Inserting these results into (2) gives

γG =
1

4
+
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The exponents for a pure ‘ordinary’ surface [10] are re-
covered with nm

L = ns
L = 0. For mixed boundaries there

is only one L-leg vertex emanating from the origin, thus
nm
L = 1.

3 Wedge exponents

The network can be tied in a wedge of angle α by an L̂-
leg vertex as in Figure 2. Obtaining the wedge network
exponents γG(α) involves a conformal map of the wedge
to the half-plane [10,21]. The final result

γG(α) = γG(π) − ν
(π
α
− 1
)
x′
L̂

(5)

is as given in [10], where now γG(π) is the half-plane ex-

ponent (4). The contribution x′
L̂

from the L̂-leg tie de-
pends on the particular surfaces under consideration, with
x′
L̂

= xm
L̂

for the mixed boundary.
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It follows from (4) and (5) that an L-leg star poly-
mer confined to a wedge with o-o, s-s or o-s surfaces has
exponents

γo
L(α) = 1 +

27L

64
−

3πL(3L+ 2)

32α
, (6)
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−

9πL(L− 2) + 8π

32α
, (7)
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32α
· (8)

The o-o result (6) is that obtained in [10]. As particular
examples relevant to our numerical tests, consider a single
SAW emanating from a 90◦ corner. In this case the above

formulae reduce to γo
1(
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2
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, γs

1(
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2
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, γm
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. The exponents differ if the walk terminates on either

boundary. In that case (4) and (5) give γo
11(

π
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) = −
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the o-o corner and γs
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the o-s corner the walk can terminate on either the o side,

with γmo
11 (
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2
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, or on the s side, with γms
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2
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4 Adsorption temperatures
on the honeycomb lattice

There are two regular types of boundary of a honeycomb
lattice. For the horizontal boundary of Figure 3 the critical
adsorption temperature is known to be given by [14]

exp

(
ε

kTa

)
= 1 +

√
2 = 2.414 . . . (9)

This result follows from the boundary vertex weights of
the corresponding exactly solvable O(n) loop model [17].

The adsorption temperature for the vertical boundary
of Figure 3 can be determined in a similar way. Specifi-
cally, the horizontal boundary in Figure 3 follows on tak-
ing the value u = λ in the vertex weights of the more
general solvable loop model on the square lattice [14]. The
vertical boundary in Figure 3 follows on taking the value
u = 2λ. As a result the critical fugacity of a step along the

boundary is given by y∗ = 1/
√
tbts where tb = 2 cos

π

8
=
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√

2)1/2 and t2s = cos
5π

16
/cos
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16
= t2b − tb − 1. The

critical adsorption temperature is thus given by
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√
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2
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2
= 2.455 . . . (10)

5 Results from exact enumeration

The general theory presented above generalises that al-
ready given for polymer networks in wedges of arbitrary
angles [10] to the case of mixed boundary conditions. To

Fig. 3. A SAW (origin denoted by a cross) on the honeycomb
lattice attached to the vertex of a 90◦ wedge with contacts iden-
tified with the vertical boundary (open circles) and with the
horizontal boundary (closed circles). A fugacity κv is associ-
ated with open circle contacts while a fugacity κv is associated
with closed circle contacts. (The walk is not permitted to go
beyond the indicated dotted lines.)

test the exponent predictions in this case we have enumer-
ated SAWs on the honeycomb lattice with various ends at-
tached to a surface and confined in wedges of two different
angles (π/2 and π). This also allows us to verify the criti-
cal boundary temperature (10). The critical temperature
(9) and the exponent γm

1 (π) have been verified previously
[9]. (A comprehensive account of this study can be found
in [22].) Previous numerical work other than [9] has fo-
cused on the square and triangular lattices. However, our
numerical task is made considerably easier since the exact
prediction for the connective constant for SAWs on the

honeycomb lattice, µ =
√

2 +
√

2, allows the biasing of
exponent estimates.

In this letter we consider two particular situations:
SAWs restricted to the upper half plane of the honeycomb
lattice with fugacities κl and κr associated with contacts
between the walk and either side of the surface as shown
in Figure 1 of [9], and more importantly SAWs restricted
to the positive quadrant of the honeycomb lattice, where
the fugacities κv and κh are associated with contacts be-
tween the walk and the vertical and horizontal surfaces,
respectively, as shown in Figure 3. The partition function
for walks of length n with one end attached to a surface,
with different energies for sites interacting with either side
of a π/2 wedge (see Fig. 3), is given by

Z1
n(κv, κh, π/2) =

∑
mv,mh

c1n(mv,mh, π/2)κmvv κmhh , (11)

where the sum is over all allowed values of the number of
contacts mv with the vertical boundary, and the number
of contacts mh with the horizontal boundary. The coeffi-
cients c1n(mv,mh, π/2) are the number of configurations of
length n with mv and mh vertical and horizontal interac-
tions respectively. The partition functions for walks with
the both ends attached, Z11

n (κv, κh, π/2), simply replaces
c1n(mv,mh, π/2) with c11

n (mv,mh, π/2) for configurations
attached at both ends. Also, in the cases, as described
in [9], associated with a flat surface (wedge angle π),
the partition functions, Z1

n(κl, κr, π) and Z11
n (κl, κr, π),

are defined with the obvious modifications. Tables of the
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Table 1. Our estimates for the entropic exponent γ for SAWs
attached to a flat surface or π/2 wedge.

numerical predicted

γo
1(π) = 0.9531(5) ( 61

64 = 0.953125)

γo
11(π) = −0.186(2) (− 3

16 = −0.1875)

γo
1(π/2) = 0.4843(9) ( 31

64
= 0.484375)

γo
11(π/2) = −0.655(3) (− 21

32 = −0.65625)

γs
1(π) = 1.451(2) ( 93

64 = 1.453125)

γs
11(π) = 0.813(4) ( 13

16
= 0.8125)

γs
1(π/2) = 1.482(8) ( 95

64 = 1.484375)

γs
11(π/2) = 0.85(1) ( 27

32 = 0.84375)

γm
1 (π) = 1.3279(5) ( 85

64
= 1.328125)

γmo
11 (π) = 0.183(6) ( 3

16 = 0.1875)

γms
11 (π) = 0.689(9) ( 11

16 = 0.6875)

γm
1 (π/2) = 1.233(6) ( 79

64
= 1.234375)

γmo
11 (π/2) = 0.09(1) ( 3

32
= 0.09375)

γms
11 (π/2) = 0.596(7) ( 19

32 = 0.59375)

various coefficients c1n(mv,mh, π/2), etc. can be found in
[22]1. Cases where walks traverse from one side of the
wedge to the other have also been considered but numer-
ical difficulties hampered exponent calculation and hence
we do not present those results here [22]. The method
of enumeration of the coefficients was via a backtracking
algorithm, which was implemented (on a small supercom-
puter) in a similar way to that described in [9].

By setting the interaction parameters to the particu-
lar values, e.g. those implied from the critical temperature
values given in the previous section, estimates of the vari-
ous exponents were obtained by analysis of the singularity
structure of generating functions of the resulting partition
functions. The method of analysis was based primarily on
biased differential approximants as explained in [9].

For completeness we give estimates of all the expo-
nents γ1(π) and γ11(π), and γ1(π/2) and γ11(π/2) for each
boundary condition. In most cases the numerical accuracy
equals or surpasses previous estimates. It should be noted
though that errors quoted are not rigorous bounds and
represent the spread of the approximants’ exponent val-
ues (at the critical point). The difference in the accuracy
(some values are more accurate, e.g. γo

1(π), than the errors
— which are conservative — suggest) can be argued to be
due to the amount of shift required in biasing the approx-
imants, which is itself an indication of the relative con-
vergence of the series to the asymptotic forms expected.
A full discussion of how the errors and final estimates
were obtained can be found in [22], following the general
lines given in [9]. Our estimates for all exponents are in
good agreement with the predicted values and are given in
Table 1. The verification of the special exponents involved
the implicit verification of the vertical adsorption temper-
ature (Eq. (10)).

1 or via e-mail to aleks@ms.unimelb.edu.au

6 Conclusion

We present the general results for the entropic exponents
of a polymer network in two dimensions attached to the
surface in a general wedge topology. We have verified
that the theoretical formulae, coming from a combina-
tion of scaling and conformal invariance considerations
and exact results, are correct by extensively analysing
exact enumeration data from SAWs on the honeycomb
lattice. Where numerical evidence has been precise con-
firmation of the theory has been good. However, several
questions remain. One is the numerical confirmation of
exponents in this general setting for more complicated ex-
amples. Another associated question is the validity of one
of the assumptions of the theory concerning polydisperse
verses monodisperse cases [23]. Such studies are outside
the range of current exact enumeration and probably re-
quire careful Monte-Carlo work.

It is a pleasure to thank John Cardy for explaining the gen-
eral scaling and conformal invariance arguments to us. Two of
us (MTB and ALO) have been supported by the Australian
Research Council.
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